Anonymous asks...

Hi how do I stop my 6 year old chihuahua from barking at my partner when he goes out the house?

Let’s start simple. Try having your partner toss a handful of food-treats or her favorite toys at and behind your Chihuahua for her to find. The dog will be so busy cleaning up that she won’t be able to bark. Whether this will work or not depends on why the dog is doing it in the first place. Without getting too ahead of myself and the situation (sorry, I can’t turn my behaviorist brain off!), I hope that this is all the help you need. Feel free to keep me posted!

CAUTION: Every animal is a unique being in a unique situation and what you see on these webpages is generic and general and may not specifically apply to your animal's situation. Any responses to questions through this website similarly cannot be as precise and informed as is possible in a face-to-face assessment. Accordingly, you should not rely on anything set forth herein as the last word, and you hold Helping Pets Behave harmless from any liability whatsoever based on your reliance on the information you receive through this website.

Ask Me Chihuahua barking

neurosciencestuff:

Understanding parallels of human and animal parenting can benefit generations to come
Strong evidence now shows that human and animal parenting share many nervous system mechanisms. This is the conclusion of Yerkes National Primate Research Center researchers Larry Young, PhD, and James Rilling, PhD, in their review article about the biology of mammalian parenting, published in this week’s issue of Science. Better understanding this biology could lead to improved social development, benefitting generations of humans and animals to come.
In their article, Young and Rilling review the biological mechanisms governing a shift in mammals’ parental motivation that begins with aversion and transforms into irresistible attraction after giving birth. They say the same molecules that prepare the uterus for pregnancy, stimulate milk production and initiate labor also activate specific neural pathways to motivate parents to nurture, bond with and protect their offspring.
According to Young, “We have learned a tremendous amount about the specific hormonal and brain mechanisms regulating parental behavior and how parental nurturing influences the development of the offspring brain by using animal models, and many of these same mechanisms influence human parenting behavior as well.”
Young is division chief of Behavioral Neuroscience and Psychiatric Disorders at the Yerkes Research Center, director of the Center for Translational Social Neuroscience at Emory, a William P. Timmie professor in the Department of Psychiatry at Emory’s School of Medicine and author of The Chemistry Between Us: Love, Sex and the Science of Attraction, which also summarizes the parallels between brain mechanisms regulating sexual and parenting behaviors in animals and humans.
Rilling, who is a Yerkes researcher and an associate professor in Emory’s Department of Anthropology, adds, “The human brain has mechanisms in place to support parent-child bonding, and when functioning properly, these mechanisms facilitate the development of secure attachment and sound mental health that is transmitted across generations.”
The researchers divided their review into nine categories, including neural correlates of human parental care, two specific to parenting and oxytocin, two focused specifically on paternal caregiving by fathers and two related to the effect of parenting on social development. Examples within these categories include that the frustration inconsolable infant crying induces is a risk factor for infant abuse, highlighting the importance of emotion regulation for sensitive parenting; that oxytocin affects maternal motivation and paternal behaviors essential for nurturing, bonding and defending the offspring; that testosterone may interfere with parenting effort; and that variation in parental nurturing can affect brain development, thus affecting future social behaviors.
“With this comprehensive review, we can see nervous system correlations across species that result in positive and negative parental care,” says Young. “This information is critical to further studying social development in order to facilitate positive parental behaviors that will benefit generations to come,” he continues.

neurosciencestuff:

Understanding parallels of human and animal parenting can benefit generations to come

Strong evidence now shows that human and animal parenting share many nervous system mechanisms. This is the conclusion of Yerkes National Primate Research Center researchers Larry Young, PhD, and James Rilling, PhD, in their review article about the biology of mammalian parenting, published in this week’s issue of Science. Better understanding this biology could lead to improved social development, benefitting generations of humans and animals to come.

In their article, Young and Rilling review the biological mechanisms governing a shift in mammals’ parental motivation that begins with aversion and transforms into irresistible attraction after giving birth. They say the same molecules that prepare the uterus for pregnancy, stimulate milk production and initiate labor also activate specific neural pathways to motivate parents to nurture, bond with and protect their offspring.

According to Young, “We have learned a tremendous amount about the specific hormonal and brain mechanisms regulating parental behavior and how parental nurturing influences the development of the offspring brain by using animal models, and many of these same mechanisms influence human parenting behavior as well.”

Young is division chief of Behavioral Neuroscience and Psychiatric Disorders at the Yerkes Research Center, director of the Center for Translational Social Neuroscience at Emory, a William P. Timmie professor in the Department of Psychiatry at Emory’s School of Medicine and author of The Chemistry Between Us: Love, Sex and the Science of Attraction, which also summarizes the parallels between brain mechanisms regulating sexual and parenting behaviors in animals and humans.

Rilling, who is a Yerkes researcher and an associate professor in Emory’s Department of Anthropology, adds, “The human brain has mechanisms in place to support parent-child bonding, and when functioning properly, these mechanisms facilitate the development of secure attachment and sound mental health that is transmitted across generations.”

The researchers divided their review into nine categories, including neural correlates of human parental care, two specific to parenting and oxytocin, two focused specifically on paternal caregiving by fathers and two related to the effect of parenting on social development. Examples within these categories include that the frustration inconsolable infant crying induces is a risk factor for infant abuse, highlighting the importance of emotion regulation for sensitive parenting; that oxytocin affects maternal motivation and paternal behaviors essential for nurturing, bonding and defending the offspring; that testosterone may interfere with parenting effort; and that variation in parental nurturing can affect brain development, thus affecting future social behaviors.

“With this comprehensive review, we can see nervous system correlations across species that result in positive and negative parental care,” says Young. “This information is critical to further studying social development in order to facilitate positive parental behaviors that will benefit generations to come,” he continues.

CAUTION: Every animal is a unique being in a unique situation and what you see on these webpages is generic and general and may not specifically apply to your animal's situation. Any responses to questions through this website similarly cannot be as precise and informed as is possible in a face-to-face assessment. Accordingly, you should not rely on anything set forth herein as the last word, and you hold Helping Pets Behave harmless from any liability whatsoever based on your reliance on the information you receive through this website.

parenting behavior

Testimonial 17
I have a 5-year old rescue Border Collie named Jett who came with many issues — extremely reactive to noises, cats, dogs, any distraction really, and with a strong prey drive. One trainer told me it might be best if he was put down because he’s a hard case. With Mary’s help over the past year, including individual and small classes, Jett is now friendly with our cat! Amazing!
We have gradually moved up to Mary’s small weekly classes to focus on his fear of other dogs, where Jett is slowly improving, calmly working long distance from other dogs. Mary sends out weekly e-mails recapping class so it’s easier to continue training all week. All classes highlight the positives and honor the dog. Other owners are known to compliment each others dogs’ progress. Very supportive as I work toward a more confident, focused dog.
I hope Jett and I can return to agility; he’s already a more relaxed, happier dog. He now wags his tail and follows me around the house. Small steps but progress!
Kathie L. from Crownsville, MD

Testimonial 17

I have a 5-year old rescue Border Collie named Jett who came with many issues — extremely reactive to noises, cats, dogs, any distraction really, and with a strong prey drive. One trainer told me it might be best if he was put down because he’s a hard case. With Mary’s help over the past year, including individual and small classes, Jett is now friendly with our cat! Amazing!

We have gradually moved up to Mary’s small weekly classes to focus on his fear of other dogs, where Jett is slowly improving, calmly working long distance from other dogs. Mary sends out weekly e-mails recapping class so it’s easier to continue training all week. All classes highlight the positives and honor the dog. Other owners are known to compliment each others dogs’ progress. Very supportive as I work toward a more confident, focused dog.

I hope Jett and I can return to agility; he’s already a more relaxed, happier dog. He now wags his tail and follows me around the house. Small steps but progress!

Kathie L. from Crownsville, MD

CAUTION: Every animal is a unique being in a unique situation and what you see on these webpages is generic and general and may not specifically apply to your animal's situation. Any responses to questions through this website similarly cannot be as precise and informed as is possible in a face-to-face assessment. Accordingly, you should not rely on anything set forth herein as the last word, and you hold Helping Pets Behave harmless from any liability whatsoever based on your reliance on the information you receive through this website.

Testimonial Review Border Collie Professional Handling and Everyday Obedience Dog Testimonials

neurosciencestuff:

(Image caption: This image depicts the injection sites and the expression of the viral constructs in the two areas of the brain studied: the Dentate Gyrus of the hippocampus (middle) and the Basolateral Amygdala (bottom corners). Image courtesy of the researchers)
Neuroscientists reverse memories’ emotional associations
Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.
A new study from MIT neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics — a technique that uses light to control neuron activity.
The findings, described in the Aug. 27 issue of Nature, demonstrated that a neuronal circuit connecting the hippocampus and the amygdala plays a critical role in associating emotion with memory. This circuit could offer a target for new drugs to help treat conditions such as post-traumatic stress disorder, the researchers say.
“In the future, one may be able to develop methods that help people to remember positive memories more strongly than negative ones,” says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience, director of the RIKEN-MIT Center for Neural Circuit Genetics at MIT’s Picower Institute for Learning and Memory, and senior author of the paper.
The paper’s lead authors are Roger Redondo, a Howard Hughes Medical Institute postdoc at MIT, and Joshua Kim, a graduate student in MIT’s Department of Biology.
Shifting memories
Memories are made of many elements, which are stored in different parts of the brain. A memory’s context, including information about the location where the event took place, is stored in cells of the hippocampus, while emotions linked to that memory are found in the amygdala.
Previous research has shown that many aspects of memory, including emotional associations, are malleable. Psychotherapists have taken advantage of this to help patients suffering from depression and post-traumatic stress disorder, but the neural circuitry underlying such malleability is not known.
In this study, the researchers set out to explore that malleability with an experimental technique they recently devised that allows them to tag neurons that encode a specific memory, or engram. To achieve this, they label hippocampal cells that are turned on during memory formation with a light-sensitive protein called channelrhodopsin. From that point on, any time those cells are activated with light, the mice recall the memory encoded by that group of cells.
Last year, Tonegawa’s lab used this technique to implant, or “incept,” false memories in mice by reactivating engrams while the mice were undergoing a different experience. In the new study, the researchers wanted to investigate how the context of a memory becomes linked to a particular emotion. First, they used their engram-labeling protocol to tag neurons associated with either a rewarding experience (for male mice, socializing with a female mouse) or an unpleasant experience (a mild electrical shock). In this first set of experiments, the researchers labeled memory cells in a part of the hippocampus called the dentate gyrus.
Two days later, the mice were placed into a large rectangular arena. For three minutes, the researchers recorded which half of the arena the mice naturally preferred. Then, for mice that had received the fear conditioning, the researchers stimulated the labeled cells in the dentate gyrus with light whenever the mice went into the preferred side. The mice soon began avoiding that area, showing that the reactivation of the fear memory had been successful.
The reward memory could also be reactivated: For mice that were reward-conditioned, the researchers stimulated them with light whenever they went into the less-preferred side, and they soon began to spend more time there, recalling the pleasant memory.
A couple of days later, the researchers tried to reverse the mice’s emotional responses. For male mice that had originally received the fear conditioning, they activated the memory cells involved in the fear memory with light for 12 minutes while the mice spent time with female mice. For mice that had initially received the reward conditioning, memory cells were activated while they received mild electric shocks.
Next, the researchers again put the mice in the large two-zone arena. This time, the mice that had originally been conditioned with fear and had avoided the side of the chamber where their hippocampal cells were activated by the laser now began to spend more time in that side when their hippocampal cells were activated, showing that a pleasant association had replaced the fearful one. This reversal also took place in mice that went from reward to fear conditioning.
Altered connections
The researchers then performed the same set of experiments but labeled memory cells in the basolateral amygdala, a region involved in processing emotions. This time, they could not induce a switch by reactivating those cells — the mice continued to behave as they had been conditioned when the memory cells were first labeled.
This suggests that emotional associations, also called valences, are encoded somewhere in the neural circuitry that connects the dentate gyrus to the amygdala, the researchers say. A fearful experience strengthens the connections between the hippocampal engram and fear-encoding cells in the amygdala, but that connection can be weakened later on as new connections are formed between the hippocampus and amygdala cells that encode positive associations.
“That plasticity of the connection between the hippocampus and the amygdala plays a crucial role in the switching of the valence of the memory,” Tonegawa says.
These results indicate that while dentate gyrus cells are neutral with respect to emotion, individual amygdala cells are precommitted to encode fear or reward memory. The researchers are now trying to discover molecular signatures of these two types of amygdala cells. They are also investigating whether reactivating pleasant memories has any effect on depression, in hopes of identifying new targets for drugs to treat depression and post-traumatic stress disorder.
David Anderson, a professor of biology at the California Institute of Technology, says the study makes an important contribution to neuroscientists’ fundamental understanding of the brain and also has potential implications for treating mental illness.
“This is a tour de force of modern molecular-biology-based methods for analyzing processes, such as learning and memory, at the neural-circuitry level. It’s one of the most sophisticated studies of this type that I’ve seen,” he says.

neurosciencestuff:

(Image caption: This image depicts the injection sites and the expression of the viral constructs in the two areas of the brain studied: the Dentate Gyrus of the hippocampus (middle) and the Basolateral Amygdala (bottom corners). Image courtesy of the researchers)

Neuroscientists reverse memories’ emotional associations

Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.

A new study from MIT neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics — a technique that uses light to control neuron activity.

The findings, described in the Aug. 27 issue of Nature, demonstrated that a neuronal circuit connecting the hippocampus and the amygdala plays a critical role in associating emotion with memory. This circuit could offer a target for new drugs to help treat conditions such as post-traumatic stress disorder, the researchers say.

“In the future, one may be able to develop methods that help people to remember positive memories more strongly than negative ones,” says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience, director of the RIKEN-MIT Center for Neural Circuit Genetics at MIT’s Picower Institute for Learning and Memory, and senior author of the paper.

The paper’s lead authors are Roger Redondo, a Howard Hughes Medical Institute postdoc at MIT, and Joshua Kim, a graduate student in MIT’s Department of Biology.

Shifting memories

Memories are made of many elements, which are stored in different parts of the brain. A memory’s context, including information about the location where the event took place, is stored in cells of the hippocampus, while emotions linked to that memory are found in the amygdala.

Previous research has shown that many aspects of memory, including emotional associations, are malleable. Psychotherapists have taken advantage of this to help patients suffering from depression and post-traumatic stress disorder, but the neural circuitry underlying such malleability is not known.

In this study, the researchers set out to explore that malleability with an experimental technique they recently devised that allows them to tag neurons that encode a specific memory, or engram. To achieve this, they label hippocampal cells that are turned on during memory formation with a light-sensitive protein called channelrhodopsin. From that point on, any time those cells are activated with light, the mice recall the memory encoded by that group of cells.

Last year, Tonegawa’s lab used this technique to implant, or “incept,” false memories in mice by reactivating engrams while the mice were undergoing a different experience. In the new study, the researchers wanted to investigate how the context of a memory becomes linked to a particular emotion. First, they used their engram-labeling protocol to tag neurons associated with either a rewarding experience (for male mice, socializing with a female mouse) or an unpleasant experience (a mild electrical shock). In this first set of experiments, the researchers labeled memory cells in a part of the hippocampus called the dentate gyrus.

Two days later, the mice were placed into a large rectangular arena. For three minutes, the researchers recorded which half of the arena the mice naturally preferred. Then, for mice that had received the fear conditioning, the researchers stimulated the labeled cells in the dentate gyrus with light whenever the mice went into the preferred side. The mice soon began avoiding that area, showing that the reactivation of the fear memory had been successful.

The reward memory could also be reactivated: For mice that were reward-conditioned, the researchers stimulated them with light whenever they went into the less-preferred side, and they soon began to spend more time there, recalling the pleasant memory.

A couple of days later, the researchers tried to reverse the mice’s emotional responses. For male mice that had originally received the fear conditioning, they activated the memory cells involved in the fear memory with light for 12 minutes while the mice spent time with female mice. For mice that had initially received the reward conditioning, memory cells were activated while they received mild electric shocks.

Next, the researchers again put the mice in the large two-zone arena. This time, the mice that had originally been conditioned with fear and had avoided the side of the chamber where their hippocampal cells were activated by the laser now began to spend more time in that side when their hippocampal cells were activated, showing that a pleasant association had replaced the fearful one. This reversal also took place in mice that went from reward to fear conditioning.

Altered connections

The researchers then performed the same set of experiments but labeled memory cells in the basolateral amygdala, a region involved in processing emotions. This time, they could not induce a switch by reactivating those cells — the mice continued to behave as they had been conditioned when the memory cells were first labeled.

This suggests that emotional associations, also called valences, are encoded somewhere in the neural circuitry that connects the dentate gyrus to the amygdala, the researchers say. A fearful experience strengthens the connections between the hippocampal engram and fear-encoding cells in the amygdala, but that connection can be weakened later on as new connections are formed between the hippocampus and amygdala cells that encode positive associations.

“That plasticity of the connection between the hippocampus and the amygdala plays a crucial role in the switching of the valence of the memory,” Tonegawa says.

These results indicate that while dentate gyrus cells are neutral with respect to emotion, individual amygdala cells are precommitted to encode fear or reward memory. The researchers are now trying to discover molecular signatures of these two types of amygdala cells. They are also investigating whether reactivating pleasant memories has any effect on depression, in hopes of identifying new targets for drugs to treat depression and post-traumatic stress disorder.

David Anderson, a professor of biology at the California Institute of Technology, says the study makes an important contribution to neuroscientists’ fundamental understanding of the brain and also has potential implications for treating mental illness.

“This is a tour de force of modern molecular-biology-based methods for analyzing processes, such as learning and memory, at the neural-circuitry level. It’s one of the most sophisticated studies of this type that I’ve seen,” he says.

CAUTION: Every animal is a unique being in a unique situation and what you see on these webpages is generic and general and may not specifically apply to your animal's situation. Any responses to questions through this website similarly cannot be as precise and informed as is possible in a face-to-face assessment. Accordingly, you should not rely on anything set forth herein as the last word, and you hold Helping Pets Behave harmless from any liability whatsoever based on your reliance on the information you receive through this website.

fear conditioning PTSD emotional memories